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INTRODUCTION 
Neural networks have been used in a number of robotic applications (e.g., (Das & 

Kar, 2006) (Fierro & Lewis, 1998)), including both manipulators and mobile robots. A 

typical approach is to use neural networks for nonlinear system modelling, including for 

instance the learning of forward and inverse models of a plant, noise cancellation, and 

other forms of nonlinear control. In most of these cases a “generic” neural network—

typically a multi-layer perceptron trained with the backpropagation learning rule—is 

embedded within a traditional control scheme, and its primary function is to learn the 

parameters that lead to a stable control (Fierro & Lewis, 1998). However, for this sort of 

application the neural network is being used as little more than a function approximator 

with good generalization properties. Furthermore, this sort of approach does not lend 

itself well to less constrained problems, such as navigation of a mobile robot in an 

unknown environment. 

An alternative approach is to solve a particular problem by designing a specialized 

neural network architecture and/or learning rule (Sutton & Barto, 1981). It is clear that 

biological brains, though exhibiting a certain degree of homogeneity, rely on many 

specialized circuits designed to solve particular problems. For instance, the neocortex of 

most mammals tends to be fairly uniform across sensory modalities, but the majority of 

subcortical processing is highly specialized for each modality. 

We are interested in understanding how animals are able to solve complex 

problems such as learning to navigate in an unknown environment, with the aim of 

applying what is learned of biology to the control of robots (Chang & Gaudiano, 1998) 

(Martínez-Marín, 2007) (Montes-González, Santos-Reyes & Ríos-Figueroa, 2006). In 

particular, this article presents a neural architecture that makes possible the integration of 

a kinematical adaptive neuro-controller for trajectory tracking and an obstacle avoidance 

adaptive neuro-controller for nonholonomic mobile robots. The kinematical adaptive 

neuro-controller is a real-time, unsupervised neural network that learns to control a 

nonholonomic mobile robot in a nonstationary environment, which is termed Self-

Organization Direction Mapping Network (SODMN), and combines associative learning 

and Vector Associative Map (VAM) learning to generate transformations between spatial 

and velocity coordinates (García-Córdova, Guerrero-González & García-Marín, 2007). 

The transformations are learned in an unsupervised training phase, during which the 



 

robot moves as a result of randomly selected wheel velocities. The robot learns the 

relationship between these velocities and the resulting incremental movements. The 

obstacle avoidance adaptive neuro-controller is a neural network that learns to control 

avoidance behaviours in a mobile robot based on a form of animal learning known as 

operant conditioning. Learning, which requires no supervision, takes place as the robot 

moves around a cluttered environment with obstacles. The neural network requires no 

knowledge of the geometry of the robot or of the quality, number, or configuration of the 

robot’s sensors. The efficacy of the proposed neural architecture is tested experimentally 

by a differentially driven mobile robot. 

 

BACKGROUND 
Several heuristic approaches based on neural networks (NNs) have been proposed 

for identification and adaptive control of nonlinear dynamic systems (Fierro & Lewis, 

1998) (Pardo-Ayala & Angulo-Bahón, 2007). 

In wheeled mobile robots (WMR), the trajectory-tracking problem with exponential 

convergence has been solved theoretically using time-varying state feedback based on the 

backstepping technique in (Ping & Nijmeijer, 1997). The kinematical model of mobile 

robots can be described in polar coordinates and stabilization achieved using the 

backstepping technique (Das & Kar, 2006). Dynamic feedback linearization has been 

used for trajectory tracking and posture stabilization of mobile robot systems in chained 

form (Oriolo, Luca & Vendittelli, 2002). 

The study of autonomous behaviour has become an active research area in the field 

of robotics. Even the simplest organisms are capable of behavioural feats unimaginable 

for the most sophisticated machines. When an animal has to operate in an unknown 

environment it must somehow learn to predict the consequences of its own actions. By 

learning the causality of environmental events, it becomes possible for an animal to 

predict future and new events. Biological organism are a clear example that this short of 

learning is possible in spite of what, from an engineering standpoint, seem to be 

insurmountable difficulties: noisy sensors, unknown kinematics and dynamics, 

nostationary statistics, and so on. A related form of learning is known as operant 

conditioning (Grossberg, 1971). Chang and Gaudiano (Chang & Gaudiano, 1998) 

introduce a neural network for obstacle avoidance that is based on a model of classical 

and operant conditioning. 

Psychologists have identified classical and operant conditioning as two primary 

forms of learning that enables animals to acquire the causal structure of their 

environment. In the classical conditioning paradigm, learning occurs by repeated 

association of a Conditioned Stimulus (CS), which normally has no particular 

significance for an animal, with an Unconditioned Stimulus (UCS), which has 

significance for an animal and always gives rise to an Unconditioned Response (UCR). 

The response that comes to be elicited by the CS after classical conditioning is known as 

the Conditioned Response (CR) (Grossberg & Levine, 1987). Hence, classical 

conditioning is the putative learning process that enables animals to recognize 

informative stimuli in the environment. 

In the case of operant conditioning, an animal learns the consequences of its 

actions. More specifically, the animal learns to exhibit more frequently a behaviour that 



 

has led to reward in the past, and to exhibit less frequently a behaviour that led to 

punishment. 

In the field of neural networks research, it is often suggested that neural networks 

based on associative learning laws can model the mechanisms of classical conditioning, 

while neural networks based on reinforcement learning laws can model the mechanisms 

of operant conditioning (Chang & Gaudiano, 1998). 

A number of planning algorithms have been proposed for generating trajectories 

that provide smooth motion (Galindo, González & Fernández-Madrigal, 2006). These 

trajectories are computed in open-loop, but in real environments where a vehicle is 

subject to perturbations and uncertainty, closed-loop action is more desirable. Minimal 

length paths of simplified car-like vehicles have been characterized in (Lamiraux & 

Laumond, 2001). This result is proven in the absence of obstacles and it is computed in 

open-loop. Dynamic Programming (DP) provides a closed-loop solution including 

obstacles. Although DP is efficient compared with direct search, it requires a lot of 

computational resources and a model of the motion law of the vehicle (Galindo, González 

& Fernández-Madrigal, 2006). The reinforcement learning is used to acquire navigation 

skills for autonomous vehicles, and updates both the vehicle model and optimal 

behaviour at the same time (Galindo, Fernández-Madrigal & González, 2007).  

In this article, we propose a neurobiologically inspired neural architecture to 

acquire optimal navigation behaviours for autonomous vehicles in unknown 

environments. This neural architecture shows how an organism, in this case a robot, can 

learn without supervision to recognize simple stimuli in its environment and to associate 

them with different actions. 

 

ARCHITECTURE OF THE NEURAL CONTROL SYSTEM 
In this article, the kinematical adaptive neuro-controller is a real-time, unsupervised 

neural network, which is termed Self-Organization Direction Mapping Network 

(SODMN), uses an associative learning to generate transformations between spatial and 

velocity coordinates (García-Córdova, Guerrero-González & García-Marín, 2007). The 

obstacle avoidance adaptive neuro-controller is a neural network that learns to control 

avoidance behaviours based on a form of animal learning known as operant conditioning.  

Figure 1(a) illustrates our proposed neural architecture. The trajectory tracking 

control without obstacles is implemented by the SODMN and a neural network of 

biological behaviour implements the avoidance behaviour of obstacles. 

 

Self-Organization Direction Mapping Network (SODMN) 

At a given set of angular velocities, the differential relationship between mobile 

robot motions in spatial coordinates and angular velocities of wheels is expressed like a 

linear mapping. The transformation of spatial directions to wheels angular velocities is 

shown in Fig. 1(b). The spatial error is computed to get a spatial direction vector (DVs). 

The DVs is transformed by the direction mapping network elements Vik to corresponding 

motor direction vector (DVm). On the other hand, a set of tonically active inhibitory 

cells, which receive broad-based inputs that determine the context of a motor action, was 

implemented as a context field. The context field selects the Vik elements based on the 

wheels angular velocities configuration. 
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Fig. 1. a) Neural architecture for reactive and adaptive navigation of a mobile robot. b) Self-

organization direction mapping network for the trajectory tracking of a mobile robot. 

 

A speed-control GO signal acts as a non-specific multiplicative gate and controls 

the movement’s overall speed. The GO signal is an input from a decision centre in the 

brain, and starts at zero before movement and then grows smoothly to a positive value as 

the movement develops. During the learning, sensed angular velocities of wheels are fed 

into the DVm and the GO signal is inactive. 

Activities of cells of the DVs are represented in the neural network by quantities 

(S1, S2, ..., Sm), while activities of the cells of the motor direction vector (DVm) are 

represented by quantities (R1, R2, ..., Rn). The direction mapping is formed with a field of 

cells with activities Vik. Each Vik cell receives the complete set of spatial inputs Sj, j = 1, 

..., m, but connects to only one Ri cell (see Figure 1(b)). The mechanism that is used to 

ensure weights converge to the correct linear mapping is similar to the VAM learning 

construction (Gaudiano, & Grossberg, 1991). The direction mapping cells ( n kV ) 

compute a difference of activity between the spatial and motor direction vectors via 

feedback from DVm. During learning, this difference drives the adjustment of the 

weights. During performance, the difference drives DVm activity to the value encoded in 

the learned mapping. 

A context field cell pauses when it recognizes a particular velocity state (i.e., a 

velocity configuration) on its inputs, and thereby disinhibits its target cells. The target 

cells (direction mapping cells) are completely shut off when their context cells are active. 

This is shown in Fig. 1(b). Each context field cell projects to a set of direction mapping 

cells, one for each velocity vector component. Each velocity vector component has a set 

of direction mapping cells associated with it, one for each context. A cell is “off” for a 

compact region of the velocity space. It is assumed for simplicity that only one context 

field cell turns “off” at a time. In Figure 1(b), inactive cells are shown as white disks. The 

centre context field cell is “off” when the angular velocities are in the centre region of the 

velocity space. The “off” context cell enables a subset of direction mapping cells through 

the inhibition variable ck, while “on” context cells disable to the other subsets. 



 

The learning is obtained by decreasing weights in proportion to the product of the 

presynaptic and postsynaptic activities (Gaudiano, & Grossberg, 1991). The training is 

done by generating random movements, and by using the resulting angular velocities and 

observed spatial velocities of the mobile robot as training vectors to the direction 

mapping network. 

 

Neural Network for the Avoidance Behavior (NNAB) 

Grossberg proposed a model of classical and operant conditioning, which was 

designed to account for a variety of behavioural data on learning in vertebrates 

(Grossberg, 1971) (Grossberg & Levine, 1987). This model was used to explain a number 

of phenomena from classical conditioning. Our implementation is based in the 

Grossberg’s conditioning circuit, which follows closely that of Grossberg & Levine 

(Grossberg & Levine, 1987) and Chang & Gaudiano (Chang & Gaudiano, 1998), and is 

shown in Figure 2. 
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Fig. 2. Neural Network for the avoidance behaviour. 

 

In this model the sensory cues (both CSs and UCS) are stored in Short Term 

Memory (STM) within the population labeled S, which includes competitive interactions 

to ensure that the most salient cues are contrast enhanced and stored in STM while less 

salient cues are suppressed. The population S is modelled as a recurrent competitive field 

in simplified discrete-time version, which removes the inherent noise, efficiently 

normalizes and contrast-enhances from the ultrasound sensors activations. In the present 

model, the CS nodes correspond to activation from the robot’s ultrasound sensors. In the 

network Ii represents a sensor value which codes proximal objects with large values and 

distal objects with small values. The network requires no knowledge of the geometry of 

the mobile robot or the quality, number, or distribution of sensors over the robot’s body. 

The drive node D corresponds to the Reward/Punishment component of operant 

conditioning (an animal/robot learns the consequences of its own actions). Learning can 

only occur when the drive node is active. Activation of drive node D is determined by the 

weighted sum of all the CS inputs, plus the UCS input, which is presumed to have a 

large, fixed connection strength. The drive node is active when the robot collides with an 

obstacle, which could be detected through a collision sensor, or when any one of the 

proximity sensors indicates that an obstacle is closer than the sensor’s minimum range. 

Then the unconditioned stimulus (USC) in this case corresponds to a collision detected 



 

by the mobile robot. The activation of the drive node and of the sensory nodes converges 

upon the population of polyvalent cells P. Polyvalent cells require the convergence of 

two types of inputs in order to become active. In particular, each polyvalent cell receives 

input from only one sensory node, and all polyvalent cells also receive input from the 

drive node D. 

Finally, the neurons (xmi) represent the response conditioned or unconditioned and 

are thus connected to the motor system. The motor population consists of nodes (i.e., 

neurons) encoding desired angular velocities of avoidance, i.e., the activity of a given 

node corresponds to a particular desired angular velocity for the mobile robot. When 

driving the robot, activation is distributed as a Gaussian centred on the desired angular 

velocity of avoidance. The use of a Gaussian leads to smooth transitions in angular 

velocity even with few nodes. 

The output of the angular velocity population is decomposed by SODMN into left 

and right wheel angular velocities. A gain term can be used to specify the maximum 

possible velocity. In NNAB the proximity sensors initially do not propagate activity to 

the motor population because the initial weights are small or zero. The robot is trained by 

allowing it to make random movements in a cluttered environment. Specifically, we 

systematically activate each node in the angular velocity map for a short time, causing the 

robot to cover a certain distance and rotate through a certain angle depending on which 

node is activated. Whenever the robot collides with an obstacle during one of these 

movements (or comes very close to it), the nodes corresponding to the largest (closest) 

proximity sensor measurements just prior to the collision will be active. Activation of the 

drive node D allows two different kinds of learning to take place: the learning that 

couples sensory nodes (infrared or ultrasounds) with the drive node (the collision), and 

the learning of the angular velocity pattern that existed just before the collision. 

The first type of learning follows an associative learning law with decay. This 

learning enables the most active sensory cues to accrue strength in their connection to the 

drive node, so that eventually they will be able to generate their own drive signal, and 

thus activate the polyvalent cells P, and ultimately a motor response. The primary 

purpose of this learning scheme is to ensure that learning occurs only for those CS nodes 

that were active within some time window prior to the collision (UCS). The second type 

of learning, which is also of an associative type but inhibitory in nature, is used to map 

the sensor activations to the angular velocity map. By using an inhibitory learning law, 

the polyvalent cell corresponding to each sensory node learns to generate a pattern of 

inhibition that matches the activity profile active at the time of collision. For instance, if 

the robot was turning right and collided with an obstacle, the proximity sensor neuron 

most active shortly before the collision will learn to generate an inhibitory Gaussian 

centred upon the right-turn node in the angular velocity population. 

Once learning has occurred, the activation of the angular velocity map is given by 

two components (see Figure 3). An excitatory component, which is generated directly by 

the sensory system, reflects the angular velocity required to reach a given target in the 

absence of obstacles. The second, inhibitory component, generated by the conditioning 

model in response to sensed obstacles, moves the robot away from the obstacles as a 

result of the activation of sensory signals in the conditioning circuit. 

One reason for using a Gaussian distribution of activity (see Figure 3) is because 

when an excitatory Gaussian is combined with an inhibitory Gaussian at a slightly shifted 



 

position, the resulting net pattern of activity exhibits a maximum peak that is shifted in a 

direction away from the peak of the inhibitory Gaussian. Hence, the presence of an 

obstacle to the right causes that the mobile robot to shift to the left, and vice versa. 
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Fig. 3. Positive Gaussian distribution represents the angular velocity without obstacle and negative 

distribution represents activation from the conditioning circuit. The summation represents the angular 

velocity that will be used to drive the mobile robot. 

 

EXPERIMENTAL RESULTS 
The proposed control algorithm is implemented on a mobile robot from the 

Polytechnic University of Cartagena (UPCT) named “CHAMAN”. The platform has two 

driving wheels (in the rear) mounted on the same axis and two passive supporting wheels 

(in front) of free orientation. The two driving wheels are independently driven by two 

DC-motors to achieve the motion and orientation. The wheels have a radius r = 18 cm 

and are mounted on an axle of length 2R = 22 cm. The aluminium chassis of the robot 

measures 102.25×68×44 cm (L × W × h ) and contains, transmission elements, 12-VDC 

battery, two CCD cameras, and 12 ultrasound sensors. Each motor is equipped with 

incremental encoder counting 600 pulses/turn and a gear which reduces the speed to 1.25 

m/s. 

High-level control algorithms (SODMN and NNAB) are written in VC++ and run 

with a sampling time of 10 ms on a remote server (a Pentium IV processor). The PC 

communicates through a serial port with the microcontroller on the robot. Wheel PWM 

duty cycle commands are sent to the robot and encoder measures are received for 

odometrical computation. The lower level control layer is in charge of the execution of 

the high-level velocity commands. It consists of a Texas Instruments TMS320C6701 

Digital Signal Processor (DSP). The microcontroller performs three basis tasks: 1) to 

communicate with the higher-level controller through RS 232; 2) reading encoder counts 

interrupt driven; and 3) generation of PWM duty cycle. 

Figure 4 shows approach behaviours and the tracking of a trajectory by the mobile 

robot with respect to the reference trajectory. 
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(c)   

Fig. 4. Adaptive control by the SODMN. a) Approach behaviours. The symbol X indicates the start 

of the mobile robot and Ti indicates the desired reach. b) Tracking control of a desired trajectory. c) 

Real-time tracking performance. 

 

Figure 5 illustrates the mobile robot’s performance in the presence of several 

obstacles. The mobile robot starts from the initial position labeled X and reaches a 

desired position. During the movements, whenever the mobile robot is approaching an 

obstacle, the inhibitory profile from the conditioning circuit (NNAB) changes the 

selected angular velocity and makes the mobile robot turn away from the obstacle. The 

presence of multiple obstacles at different positions in the mobile robot’s sensory field 

causes a complex pattern of activation that steers the mobile robot between obstacles. 

 

 
                                  (a)                                                           (b)    
Fig. 5. Trajectory followed by the mobile robot in presence of obstacles using the NNAB. 

 



 

FUTURE TRENDS 
The tendency of robots’ control systems is to come to understand and to imitate the 

way that biological systems learn and evolve to resolve complex problems in unknown 

environments. Simple animals (e.g.: crabs, insects, scorpions and other ones) are studied 

to formalize robust neural models for the robots' locomotion system. In humans, decoded 

neural behaviors of neural activities of the cortical system tend to be applying to robotic 

prosthesis for the control of movement. Neural networks and other bio-mimetic 

techniques with an emphasis on navigation and control are used  to operate in real-time 

with only minimal assumptions about the robots or the environment, and that can learn, if 

needed, with little or no external supervision.  

In this article, the proposed neural control system can be applied for underwater 

applications. In this case, sonar sensors will replace ultrasound sensors. The proposed 

neural architecture learns to carry out a reactive and adaptive navigation nonstationary 

environments. 

 

CONCLUSION  
In this article, we have implemented a neural architecture for trajectory tracking and 

avoidance behaviours of mobile robot. A biologically inspired neural network for the 

spatial reaching tracking has been developed. This neural network is implemented as a 

kinematical adaptive neuro-controller. The SODMN uses a context field for learning the 

direction mapping between spatial and angular velocity coordinates. The transformations 

are learned during an unsupervised training phase, during which the mobile robot moves 

as result of randomly selected angular velocities of wheels. The performance of this 

neural network has been successfully demonstrated in experimental results with the 

trajectory tracking and reaching of a mobile robot. The avoidance behaviours of obstacles 

were implemented by a neural network that is based on a form of animal learning known 

as operant conditioning. A differentially driven mobile robot tested the efficacy of the 

proposed neural network for avoidance behaviours experimentally. In future works, the 

NNAB can be extended to avoid moving obstacles and the SODMN can be extended and 

implemented as a kinematical adaptive neuro-controller for robotic manipulators. 
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TERMS AND DEFINITIONS 
Artificial Neural Network: A network of many simple processors (“units” or “neurons”) 

that imitates a biological neural network. The units are connected by unidirectional 

communication channels, which carry numeric data. Neural networks can be 

trained to find nonlinear relationships in data; and are used in applications such as 

robotics, speech recognition, and signal processing or medical diagnosis. 

Backpropagation algorithm: Supervised learning technique of ANNs, based on 

minimising the error obtained from the comparison between the outputs that the 

network gives after the application of a set of network inputs and the outputs it 

should give (the desired outputs). 

Classical Conditioning: It is a form of associative learning that was first demonstrated 

by Ivan Pavlov. The typical procedure for inducing classical conditioning involves 



 

a type of learning in which a stimulus acquires the capacity to evoke a response that 

was originally evoked by another stimulus.  

Conditioned Response (CR): If the conditioned stimulus and the unconditioned stimulus 

are repeatedly paired, eventually the two stimuli become associated and the 

organism begins to produce a behavioral response to the conditioned stimulus. 

Then, the conditioned response is the learned response to the previously neutral 

stimulus. 

Conditioned stimulus (CS): It is a previously neutral stimulus that, after becoming 

associated with the unconditioned stimulus, eventually comes to trigger a 

conditioned response. The neutral stimulus could be any event that does not result 

in an overt behavioral response from the organism under investigation. 

GO signal: It is an input from a decision centre in the brain, and starts at zero before 

movement and then grows smoothly to a positive value as the movement develops.  

Neural Network for the Avoidance Behaviour (NNAB): This neural network learns to 

control avoidance behaviours based on a form of animal learning known as 

classical and operant conditioning, which is designed to account for a variety of 

behavioural data on learning in vertebrates. This model is used to explain a number 

of phenomena from classical conditioning. 

Operant Conditioning: The term "Operant" refers to how an organism operates on the 

environment, and hence, operant conditioning comes from how we respond to what 

is presented to us in our environment. Then the operant conditioning is a form of 

associative learning through which an animal learns about the consequences of its 

behaviour. 

Self-Organization Direction Mapping Network (SODMN): It is an adaptive neural 

network for self-organization of the coordinate transformations of directions (or 

velocities). It uses an associative learning to generate a mapping of spatial 

coordinate directions to joint motion directions. 

Unconditioned Response (UR): It is the unlearned response that occurs naturally in 

response to the unconditioned stimulus.  

Unconditioned stimulus (UCS): Which is one that unconditionally, naturally, and 

automatically triggers an innate, often reflexive, response in the presence of 

significant stimulus. For example, when you smell one of your favourite foods, you 

may immediately feel very hungry. In this example, the smell of the food is the 

unconditioned stimulus. 

Wheeled Mobile Robot (WMR): It is an automatic mechanical device, which is capable 

of movement in a given environment using wheels as the actuation system.  


